RTSTPS

Overview

The RTSTPS software package is a Java application that ingests raw telemetry data and produces level zero products such as sorted CCSDS packets and VCDUs. You can run it in batch mode (a one-time run with a data file and a configuration file as input) or as a server that is always running. The server or batch processor can send data across TCP/IP ports, to files, or to both at the same time depending on the setup file.

Installation

I will assume you are installing RTSTPS on a Microsoft Windows computer. You may install RTSTPS on any computer that can run Java applications, but you will need to edit the script (.bat) files.

Install the Java Runtime Environment (JRE) or the Java Development Kit (SDK) on the target computer. Choose version 1.3 or greater. You can find Java at http://java.sun.com/ under “J2SE Standard Edition, downloads.” The JRE is smaller and contains what you need to run a Java application. The SDK is a development kit, and it contains compilers and other tools to do Java development.

If you are installing RTSTPS on a Microsoft Windows platform, we recommend that you install the SDK instead of the JRE. The SDK contains both the server and client virtual machines, but the JRE only has the client virtual machine. We use the server virtual machine for better performance.

After you install Java, make sure you can run it from the command line. Open a DOS window and type “java –version”, and it should print the Java version. If it cannot find Java, then either add the Java “bin” directory to the front of the path, or edit the RTSTPS bat files and explicitly reference the java.exe executable. The executable will be called “java.exe.” Note that sometimes your search for “java.exe” may reveal more than one version, so be sure to run the one that is the latest version and that supports the server virtual machine option if possible.

If you get an error message that says “no server option” when you run the batch or server RTSTPS, then you are running a Java version that only supports the client virtual machine. (This is the default if you install the JRE under a Microsoft Windows platform.) To remedy this problem, you can download and install the SDK instead of the JRE. Then make sure that you run the “java.exe” that has the server virtual machine. (The SDK installation may install different VM versions.) If you choose to use the JRE or a VM that does not have server support, then edit the RTSTPS server and batch scripts (server.bat and stpsbatch.bat) and remove the expression “-server.”

Create a top-level “\stps” directory, and unzip the RTSTPS software there. If you use a different directory, then you must edit each “bat” file in the RTSTPS home directory to point to the proper directory.

If you want to run the RTSTPS software under linux, Solaris, or any other OS, you must first install the Java there. Then edit the server.bat and stps.policy files. In both files, change path information so that it matches the path on your target machine. If you do not change the stps.policy file, then the server will not be able to read or write files because of security violations. The stps.policy file unlocks directories. Finally if you are in unix or linux, change the file separator in server.bat from semicolon to colon, which will be in its file lists.

Running

Both the batch and server require a setup file before they do their work. Typically you would load a setup prior to each pass, although the server does have an auto-load feature, which I will explain in a bit. Setup files are stored in the “\stps\config” directory. There are some samples there.

The “\stps\data” directory is the target for output files. It also has “terracotta.dat”, which is a sample raw telemetry file of Terra spacecraft data. It contains one virtual channel and one application ID of Terra MODIS data (appid 64).

To run a quick test, first start the server by running “server.bat.” When ready, it prints “Ready to serve” in a monitor window.

Next, run “viewer.bat.” This opens a graphics controller and viewer. Click on the “load” button, and choose “terracotta.xml” from the “config” subdirectory. This loads the server with a Terra setup file. It will capture MODIS packets and store them in an EOS PDS file in the “data” subdirectory. Press the “go” button, and the RTSTPS server is ready.

I have included a graphics tool to send a file of binary data to the server. Run “sender.bat.” The host should be “localhost”, and the port number should be 4935. Leave the delay as zero. Press “go” to send. You can watch the server in the viewer window. When the sender finishes, the server should automatically shut itself down. (Sender.bat simply sends file data to a port and host. It is not specifically written for the RTSTPS server, so you might find it useful in other applications.) The output PDS files will appear in the “data” subdirectory.

If you have a firewall, then you may not be able to run the viewer, and you may have difficulties with other tools. The server accepts data by default on port 4935. The output port numbers, if any, are defined in the setup files. The viewer talks to the server using a Java protocol called RMI (Remote Method Invocation). It initially connects through port 1099, but afterwards they talk through anonymous ports, so you may not be able to get the viewer to work through a firewall.

Automatic Setup

The server automatically loads the last-loaded setup file if it suddenly receives data on port 4935 and it has yet to be configured. (You can test this by having sender resend terracotta.dat again to the server.) If you expect to use only one setup, you can use this feature to have the server run in an unattended mode. When the server first starts, it uses “default.xml” as its default setup file, which does not exist. You can set up a different default by editing server.bat and changing default.xml to something else or adding the “config” option. Remember though that if you use the viewer to load a different setup, then the new setup becomes the new default. You should add (or edit) the following option to the server command line. It must appear before “nasa.stps.server.TcpServer.”

-Dconfig=yourSetupFileName

The server will look for the file in its “config” subdirectory.

Other Installation Issues

The server has a name, and the default name is “A.” You can change its name by appending it to the very end of the command line in the server.bat file. The RTSTPS server will handle only one input line; you must run a second server to handle a second channel. Create a second server.bat, edit it, and change the input port number to something other than 4935. Also, give this server a different name, “B” for example.

The viewer will only talk to server A by default. You must run a second viewer to talk to a second server. Copy and edit viewer.bat and add the name to the end of the command line. Notice by default that the viewer talks to the server on the local host. You can change “localhost” to a different name, and then you do not have to run the viewer on the same computer as the server. “The configDir” in the command line is where the viewer first looks for configuration files that it sends to the server.

Some final words on this subject:

· Over 90% of the CPU time is used to do Reed Solomon detection and correction. If you are doing real-time data processing, I recommend that you bypass Reed Solomon correction because doing it can cause overruns.

· If you configure the server to write to a socket, note that a slow receiver will affect the server and will cause overruns in a real-time scenario.

· A socket interface exists to the server that would allow you to send text commands (load, go) to the server

· The other “bat” files in the stps directory allow one to control the server from the command line. For example, “load.bat” loads and enables the server.

Setup

Sample setup files are in the config subdirectory. An RTSTPS setup file is in XML, and you can see the template for all fields in the stps.dtd file. I apologize for the complexity of these setup files. Someday I plan to write an editor that will make them easier to build and modify. Your best bet now is to copy one and change it.

If you look at a sample setup file such as terracotta.xml with a text editor, you should note the following:

· Almost every element corresponds to an RTSTPS node. The RTSTPS is a collection of data processing nodes that are linked together. (Note however that the pseudonoise decoder node (PN) is embedded in the Frame Sync (FS) setup.) Do not change the node order in the file.

· The “links” element defines the data paths through the nodes. The first node is always the “frame_sync” node. The “links” paths are all unconditional branches. Some specific nodes (ccsds_services and path) have conditional branches. For example, ccsds_services routes CADUs to target nodes based on spacecraft ID and virtual channel ID, and those links are found in the ccsds_services element.

· Every node will support links to multiple nodes. For example, you could link the frame_sync node to reed_Solomon and to an output node, in which case the frame_sync will send frames to both targets. This multi-linking also works for the ccsds_services and path special link definitions.

· If you examine stps.dtd, you may find additional fields with defaults that are not in the sample setup files.

· You may delete most element definitions from a setup file except for the frame_sync and links elements and provided you do not link to or from them.

· The terra_decoder node handles the special, non-compliant PN encoding found in certain Terra virtual channels.

· The reed_Solomon node does not do CCSDS header correction at the moment. The arguments for it do nothing. Block detection and correction do work.

· If you need to create a special setup file and have trouble getting it to work, write to me.

These sample files are in the config subdirectory:

· Terracotta.xml. It creates MODIS appid 64 packets, vcid 42, spacecraft ID 42 and writes them to a PDS file with the proper construction record.

· Test.xml. A test file I used early on. It handles multiple virtual channels for multiple services. The output files are both annotated and non-annotated packets, frames, and units. (The annotation contains quality information and frame time.)

· Terra_test.xml. A Terra test file for vc 17 and appids 256, 257, and 258. It writes all three appids to one PDS file.

· ModisSocket.xml. Identical to Terracotta except it sends packets to port 4001 instead.

· Framer.xml. It captures frame data at the frame sync and immediately writes it to a file. It does not do Reed Solomon or any other processing.

· Aqua.xml. A setup file we used to test with the Aqua spacecraft.

Other Tools

Besides the RTSTPS server, there are several other programs in the RTSTPS package that you may find useful.

Command Line Commands

The files load.bat and shutdown.bat are command line methods to command the server. You may load and enable a configuration into the server by typing:

Load <ConfigurationFileName>

To stop and unload the server, type:

shutdown

You can stop the server (kill any running processes) by typing:

StopServer

Batch

The stpsbatch.bat script file lets you run RTSTPS as a standalone, one-time program. You run it with a configuration file and an input data file containing telemetry, and it produces whatever output is specified in the configuration. You type at the command line:

stpsbatch <configurationFileName> <dataFileName>

Sender

Sender is a graphic utility that sends files as TCP/IP packets to a designated host and port. You can use it to send data files to the RTSTPS server on port 4935, or you can use it to send any kind of data to any application. It does not use any special protocols.

Rat

Rat is a rate-buffering program that can spool data to a slow target. It may be useful when you load a configuration into the server that sends data units to a remote target directly through a TCP/IP socket. A slow target will slow down the server too, and it may cause overruns in a real-time environment. You can run Rat on the same computer as the server, or you can run it at a remote location provided you copy all necessary files there (rat.bat and stps.jar). Rat.bat requires three arguments when it is invoked:

rat <inputPort> <targetHost> <targetPort>

Rat acts as a server and listens for socket connections on its input port. When a connection is made, it then in turn connects to the target on the target port. If no one is listening, it closes down all the sockets and once again listens for connections on its input port. It will only service one input connection at a time.

Once connected, Rat gets data from the input port and sends it to the output port. If uses an internal memory queue to buffer data. If the buffer fills, it then switches to a temporary file as a buffering device. Even if the input connection closes, it will continue to send buffered data to the target. When finished, Rat closes the output socket.

The target need not alive and serving when you start Rat. Rat only attempts to connect after the RTSTPS server has connected to it. Once you start Rat, you should not have to restart it.

Alternate Setup Interface

To configure the RTSTPS server, you either use the Viewer (or the command line load command, which uses the same interface as the Viewer), or you set up the server so that it automatically loads the same setup file on each session. There is, however, an additional command interface to the server, but you will need to do some programming to use it. This interface is useful if you want to integrate the RTSTPS into a larger system. For example, you would like to connect it to scheduling software.

The RTSTPS server listens for connections on port 5935. (The port number is fixed.) It expects to receive text string messages on this port. Each message should have the normal line terminator. Case is significant. The messages are commands to load and shut down sessions. The available commands are:

	loadgo <configurationFileName>
	The server will load the configuration file from its configuration directory. It then enables itself for processing. Example: “loadgo terracotta.xml”.

	shutdown
	It stops processing and unloads the current configuration, which closes all output files.

	Quit (or a null string)
	This terminates your connection to the server through port 5935. The server will close any sockets and will wait for another connection attempt.

	rloadgo <configuration>
	You may use this form to send a complete configuration to the server instead of using a setup that is local to the server. The configuration must be one long text string following “rloadgo” with no embedded line terminators. We have not tested this command, so use at your own risk.

The server does not send responses to any of these commands, good or bad. The only feedback you will get is if you look at the server’s monitor window. It will print the usual load and shutdown messages. It will also print error messages labeled as “ProxyThread” messages if it encounters them.

UDP

In addition to the TCP/IP RTSTPS server (input data is in TCP/IP packets on port 4935), there is also a UDP version included that reads UDP datagrams from port 4935. If you are interested in using this RTSTPS server, please write to us and we will provide you with instructions.

